trazar la recta. $y = -\\frac{3}{2}x - 3$
To draw the line \(y =-\frac{3}{2}x-3\), plot the points \((0, - 3)\), \((2,-6)\) (or \((-2,0)\)) and draw a straight line through them.
To draw the line \(y =-\frac{3}{2}x-3\), plot the points \((0, - 3)\), \((2,-6)\) (or \((-2,0)\)) and draw a straight line through them.
trazar la recta.
$y = -\\frac{3}{2}x - 3$
trazar la recta.
$y = -\\frac{3}{2}x - 3$
The equation of the line is in slope - intercept form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y - intercept. For the equation \(y=-\frac{3}{2}x - 3\), the y - intercept \(b=- 3\). This means the line crosses the y - axis at the point \((0,-3)\).
The slope \(m =-\frac{3}{2}\). The slope is defined as \(\frac{\text{rise}}{\text{run}}\). A slope of \(-\frac{3}{2}\) means that for a run (change in \(x\)) of \(2\) units (we can choose a positive run for simplicity), the rise (change in \(y\)) is \(- 3\) units. Starting from the point \((0,-3)\), if we move \(x = 2\) units to the right (increase \(x\) by 2), then \(y\) will decrease by 3. So the new \(x\) - coordinate is \(0 + 2=2\) and the new \(y\) - coordinate is \(-3-3=-6\). So we have another point \((2,-6)\) on the line.
Plot the points \((0,-3)\) and \((2,-6)\) on the coordinate plane. Then, use a straight - edge to draw a line passing through these two points. We can also check with another point. For example, if \(x=-2\), then \(y =-\frac{3}{2}\times(-2)-3=3 - 3 = 0\). So the point \((-2,0)\) is also on the line. Plotting this point and confirming that it lies on the line we drew through \((0,-3)\) and \((2,-6)\) helps to ensure the line is correct.
To draw the line:
To draw the line \(y =-\frac{3}{2}x-3\), plot the points \((0, - 3)\), \((2,-6)\) (or \((-2,0)\)) and draw a straight line through them.
The equation of the line is in slope - intercept form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y - intercept. For the equation \(y=-\frac{3}{2}x - 3\), the y - intercept \(b=- 3\). This means the line crosses the y - axis at the point \((0,-3)\).
The slope \(m =-\frac{3}{2}\). The slope is defined as \(\frac{\text{rise}}{\text{run}}\). A slope of \(-\frac{3}{2}\) means that for a run (change in \(x\)) of \(2\) units (we can choose a positive run for simplicity), the rise (change in \(y\)) is \(- 3\) units. Starting from the point \((0,-3)\), if we move \(x = 2\) units to the right (increase \(x\) by 2), then \(y\) will decrease by 3. So the new \(x\) - coordinate is \(0 + 2=2\) and the new \(y\) - coordinate is \(-3-3=-6\). So we have another point \((2,-6)\) on the line.
Plot the points \((0,-3)\) and \((2,-6)\) on the coordinate plane. Then, use a straight - edge to draw a line passing through these two points. We can also check with another point. For example, if \(x=-2\), then \(y =-\frac{3}{2}\times(-2)-3=3 - 3 = 0\). So the point \((-2,0)\) is also on the line. Plotting this point and confirming that it lies on the line we drew through \((0,-3)\) and \((2,-6)\) helps to ensure the line is correct.
To draw the line:
To draw the line \(y =-\frac{3}{2}x-3\), plot the points \((0, - 3)\), \((2,-6)\) (or \((-2,0)\)) and draw a straight line through them.
trazar la recta.
$y = -\\frac{3}{2}x - 3$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
Vertical asymptote: $\boldsymbol{x=-2}$ Horizontal asymptote: $\boldsymbol{y=1}$ x-intercept: $\boldsymbol{(-5, 0)}$ y-intercept: $\boldsymbol{(0, \frac{5}{2})}$ hole: $\boldsymbo…
dashed: $\boldsymbol{g(x)=e^{3x}}$ solid: $\boldsymbol{f(x)=e^{2x}}$
Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.
Im App Store laden Kategorie: Analysis