Can u turn them to a image
- Distance A-B: $3\sqrt{5} \approx 6.7$ - Distance C-D: $3\sqrt{5} \approx 6.7$ - Distance E-F: $\sqrt{17} \approx 4.1$ - Distance G-H: $\sqrt{5} \approx 2.2$ ### Turn 2 Answer I'…
- Distance A-B: $3\sqrt{5} \approx 6.7$ - Distance C-D: $3\sqrt{5} \approx 6.7$ - Distance E-F: $\sqrt{17} \approx 4.1$ - Distance G-H: $\sqrt{5} \approx 2.2$ ### Turn 2 Answer I'…
finding distance on the coordinate plane
point a (-4, 1) point b (2, 4)
$|-4-2|=6$
$|1-4|=3$
$a^2+b^2=c^2$
$6^2+3^2=c^2$
$36+9=45$
$sqrt{45}=6.7$
point c (-5, 2) point d (-2, -4)
point e (3,1) point f (2, -3)
point g (2,-2) point h (3, -4)
Can u turn them to a image
finding distance on the coordinate plane
point a (-4, 1) point b (2, 4)
$|-4-2|=6$
$|1-4|=3$
$a^2+b^2=c^2$
$6^2+3^2=c^2$
$36+9=45$
$sqrt{45}=6.7$
point c (-5, 2) point d (-2, -4)
point e (3,1) point f (2, -3)
point g (2,-2) point h (3, -4)
Can u turn them to a image
First, confirm horizontal/vertical differences:
$\Delta x = |-4 - 2| = 6$, $\Delta y = |1 - 4| = 3$
Apply distance formula: $d=\sqrt{(\Delta x)^2+(\Delta y)^2}=\sqrt{6^2+3^2}=\sqrt{36+9}=\sqrt{45}=3\sqrt{5}\approx6.7$
Find $\Delta x = |-5 - (-2)| = 3$, $\Delta y = |2 - (-4)| = 6$
$d_{CD}=\sqrt{3^2+6^2}=\sqrt{9+36}=\sqrt{45}=3\sqrt{5}\approx6.7$
Find $\Delta x = |3 - 2| = 1$, $\Delta y = |1 - (-3)| = 4$
$d_{EF}=\sqrt{1^2+4^2}=\sqrt{1+16}=\sqrt{17}\approx4.1$
Find $\Delta x = |2 - 3| = 1$, $\Delta y = |-2 - (-4)| = 2$
$d_{GH}=\sqrt{1^2+2^2}=\sqrt{1+4}=\sqrt{5}\approx2.2$
I'm not really able to generate or draw new images myself, but I can definitely help you figure out where the points go on those grids if you want to sketch them out!
It looks like you've already got the first one down. Do you want to try plotting Point C (-5, 2) and Point D (-2, -4) next? I can walk through it with you if that helps.
First, confirm horizontal/vertical differences:
$\Delta x = |-4 - 2| = 6$, $\Delta y = |1 - 4| = 3$
Apply distance formula: $d=\sqrt{(\Delta x)^2+(\Delta y)^2}=\sqrt{6^2+3^2}=\sqrt{36+9}=\sqrt{45}=3\sqrt{5}\approx6.7$
Find $\Delta x = |-5 - (-2)| = 3$, $\Delta y = |2 - (-4)| = 6$
$d_{CD}=\sqrt{3^2+6^2}=\sqrt{9+36}=\sqrt{45}=3\sqrt{5}\approx6.7$
Find $\Delta x = |3 - 2| = 1$, $\Delta y = |1 - (-3)| = 4$
$d_{EF}=\sqrt{1^2+4^2}=\sqrt{1+16}=\sqrt{17}\approx4.1$
Find $\Delta x = |2 - 3| = 1$, $\Delta y = |-2 - (-4)| = 2$
$d_{GH}=\sqrt{1^2+2^2}=\sqrt{1+4}=\sqrt{5}\approx2.2$
I'm not really able to generate or draw new images myself, but I can definitely help you figure out where the points go on those grids if you want to sketch them out!
It looks like you've already got the first one down. Do you want to try plotting Point C (-5, 2) and Point D (-2, -4) next? I can walk through it with you if that helps.
Can u turn them to a image
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
(a) $\angle A \cong \angle Y$,$\angle B \cong \angle Z$,$\angle C \cong \angle X$ (b) $\overline{AB} \cong \overline{YZ}$,$\overline{AC} \cong \overline{XY}$,$\overline{BC} \cong …
(a) $\angle A \cong \angle X$,$\angle B \cong \angle Y$,$\angle C \cong \angle Z$ (b) $\overline{AB} \cong \overline{ZY}$,$\overline{AC} \cong \overline{XY}$,$\overline{BC} \cong …
Offizielle Website: mysovi.ai. Frage-Seiten laufen auf question-banks.mysovi.ai. Die iOS-App ist im Apple App Store verfügbar.
Im App Store laden Kategorie: Geometrie