Sovi AI

Sovi AI

Asistente de preguntas por foto

write the equation of this line in slope - intercept form. write your a…

$y = -\frac{5}{6}x - 5$

Categoría: algebra Actualizado: 2026-02-03

Pregunta

write the equation of this line in slope - intercept form.
write your answer using integers, proper fractions, and improper fractions in simplest form.

Pasos de solución

  1. Understand the question

    write the equation of this line in slope - intercept form.
    write your answer using integers, proper fractions, and improper fractions in simplest form.

  2. Explanation

    Step1: Identify y-intercept

    The line crosses the y-axis at $(0, -5)$, so $b = -5$.

    Step2: Calculate slope using two points

    Use points $(0, -5)$ and $(-6, 0)$. Slope formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$
    $m = \frac{0 - (-5)}{-6 - 0} = \frac{5}{-6} = -\frac{5}{6}$

    Step3: Substitute into slope-intercept form

    Slope-intercept form is $y = mx + b$. Substitute $m = -\frac{5}{6}$ and $b = -5$.

  3. Final answer

    $y = -\frac{5}{6}x - 5$

Respuesta

Explanation

Step1: Identify y-intercept

The line crosses the y-axis at $(0, -5)$, so $b = -5$.

Step2: Calculate slope using two points

Use points $(0, -5)$ and $(-6, 0)$. Slope formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$
$m = \frac{0 - (-5)}{-6 - 0} = \frac{5}{-6} = -\frac{5}{6}$

Step3: Substitute into slope-intercept form

Slope-intercept form is $y = mx + b$. Substitute $m = -\frac{5}{6}$ and $b = -5$.

Answer

$y = -\frac{5}{6}x - 5$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject linear algebra
Education Level high school
Difficulty unspecified
Question Type with chart
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-03T04:57:42

OCR Text

Show OCR extraction
write the equation of this line in slope - intercept form.
write your answer using integers, proper fractions, and improper fractions in simplest form.

Temas relacionados

mathematicslinear algebrawith charthigh schoolliked-answerturns-1

Preguntas relacionadas

Sovi AI iOS

Sitio oficial: mysovi.ai. Las páginas se sirven en question-banks.mysovi.ai. La app iOS está en Apple App Store.

Descargar en App Store Categoría: Álgebra