Is this right
s (for each sub - problem): 1. Through \((3,-5)\), parallel to \(y = 5x-3\): \(y = 5x-20\) 2. Through \((1,5)\), parallel to \(y = 5x-4\): \(y = 5x\) 3. Through \((-2,4)\), parall…
s (for each sub - problem): 1. Through \((3,-5)\), parallel to \(y = 5x-3\): \(y = 5x-20\) 2. Through \((1,5)\), parallel to \(y = 5x-4\): \(y = 5x\) 3. Through \((-2,4)\), parall…
equations of parallel & perpendicular lines mix-up!
$y = 2x$
$y = \\frac{1}{4}x + 4$
$y = 5x$
$y = -\\frac{1}{2}x + 3$
$y = -\\frac{1}{2}x + 4$
$y = -\\frac{1}{2}x + 1$
$y = -\\frac{1}{2}x + 2$
$y = 2x - 1$
$y = -4x + 3$
$y = 5x - 20$
start
you made it!
through: $(1, 5)$, parallel to $y = 5x - 4$
through: $(-2, 4)$, parallel to $y = -\\frac{1}{2}x + 4$
through: $(-2, 5)$, perp. to $y = 2x + 1$
through: $(-1, -2)$, perp. to $y = -\\frac{1}{2}x + 1$
through: $(4, 5)$, perp. to $y = -4x + 2$
through: $(4, -1)$, parallel to $y = -\\frac{1}{2}x + 2$
through: $(2, -5)$, parallel to $y = -4x + 1$
through: $(-2, 3)$, perp. to $y = 2x - 5$
through: $(-1, -3)$, perp. to $y = -\\frac{1}{2}x + 2$
through: $(3, -5)$, parallel to $y = 5x - 3$
Is this right
equations of parallel & perpendicular lines mix-up!
$y = 2x$
$y = \\frac{1}{4}x + 4$
$y = 5x$
$y = -\\frac{1}{2}x + 3$
$y = -\\frac{1}{2}x + 4$
$y = -\\frac{1}{2}x + 1$
$y = -\\frac{1}{2}x + 2$
$y = 2x - 1$
$y = -4x + 3$
$y = 5x - 20$
start
you made it!
through: $(1, 5)$, parallel to $y = 5x - 4$
through: $(-2, 4)$, parallel to $y = -\\frac{1}{2}x + 4$
through: $(-2, 5)$, perp. to $y = 2x + 1$
through: $(-1, -2)$, perp. to $y = -\\frac{1}{2}x + 1$
through: $(4, 5)$, perp. to $y = -4x + 2$
through: $(4, -1)$, parallel to $y = -\\frac{1}{2}x + 2$
through: $(2, -5)$, parallel to $y = -4x + 1$
through: $(-2, 3)$, perp. to $y = 2x - 5$
through: $(-1, -3)$, perp. to $y = -\\frac{1}{2}x + 2$
through: $(3, -5)$, parallel to $y = 5x - 3$
Is this right
Let's solve the problem "through: \((3, -5)\), parallel to \(y = 5x - 3\)" as an example (the first "START" problem).
Parallel lines have the same slope. The given line is \(y = 5x - 3\), which is in slope - intercept form \(y=mx + b\) (where \(m\) is the slope and \(b\) is the y - intercept). So the slope \(m\) of the line we want to find is also \(m = 5\).
The point - slope form of a line is \(y - y_1=m(x - x_1)\), where \((x_1,y_1)\) is a point on the line and \(m\) is the slope. We know that \(x_1 = 3\), \(y_1=-5\) and \(m = 5\). Substitute these values into the point - slope form:
\(y-(-5)=5(x - 3)\)
Simplify the left - hand side: \(y + 5=5(x - 3)\)
Expand the right - hand side: \(y+5 = 5x-15\)
Subtract 5 from both sides to get the slope - intercept form: \(y=5x-15 - 5\)
\(y = 5x-20\)
Let's solve another problem, for example, "through: \((1,5)\), parallel to \(y = 5x-4\)":
The slope of the line \(y = 5x - 4\) is \(m = 5\) (since it is in \(y=mx + b\) form). For a line parallel to this line, the slope of the new line is also \(m = 5\).
Using the point \((x_1,y_1)=(1,5)\) and \(m = 5\) in the point - slope form \(y - y_1=m(x - x_1)\):
\(y - 5=5(x - 1)\)
Expand the right - hand side: \(y - 5=5x-5\)
Add 5 to both sides: \(y=5x-5 + 5\)
\(y = 5x\)
For the problem "through: \((-2,4)\), parallel to \(y=-\frac{1}{2}x + 4\)":
The slope of the line \(y =-\frac{1}{2}x + 4\) is \(m=-\frac{1}{2}\). A line parallel to it has the same slope \(m =-\frac{1}{2}\).
Using the point \((x_1,y_1)=(-2,4)\) and \(m =-\frac{1}{2}\) in \(y - y_1=m(x - x_1)\):
\(y - 4=-\frac{1}{2}(x-(-2))\)
\(y - 4=-\frac{1}{2}(x + 2)\)
Expand the right - hand side: \(y - 4=-\frac{1}{2}x-1\)
Add 4 to both sides: \(y=-\frac{1}{2}x-1 + 4\)
\(y=-\frac{1}{2}x + 3\)
For the problem "through: \((-2,5)\), perp. to \(y = 2x+1\)":
If two lines are perpendicular, the product of their slopes is \(- 1\). Let the slope of the given line \(y = 2x + 1\) be \(m_1=2\), and the slope of the line we want to find be \(m_2\). Then \(m_1\times m_2=-1\), so \(2\times m_2=-1\), and \(m_2=-\frac{1}{2}\).
Using the point \((x_1,y_1)=(-2,5)\) and \(m =-\frac{1}{2}\) in \(y - y_1=m(x - x_1)\):
\(y - 5=-\frac{1}{2}(x-(-2))\)
\(y - 5=-\frac{1}{2}(x + 2)\)
Expand the right - hand side: \(y - 5=-\frac{1}{2}x-1\)
Add 5 to both sides: \(y=-\frac{1}{2}x-1 + 5\)
\(y=-\frac{1}{2}x + 4\)
For the problem "through: \((-1,-2)\), perp. to \(y=-\frac{1}{2}x + 1\)":
The slope of the line \(y=-\frac{1}{2}x + 1\) is \(m_1 =-\frac{1}{2}\). Let the slope of the perpendicular line be \(m_2\). Since \(m_1\times m_2=-1\), we have \(-\frac{1}{2}\times m_2=-1\), so \(m_2 = 2\).
Using the point \((x_1,y_1)=(-1,-2)\) and \(m = 2\) in \(y - y_1=m(x - x_1)\):
\(y-(-2)=2(x-(-1))\)
\(y + 2=2(x + 1)\)
Expand the right - hand side: \(y + 2=2x+2\)
Subtract 2 from both sides: \(y=2x+2 - 2\)
\(y = 2x\)
For the problem "through: \((4,5)\), perp. to \(y=-4x + 2\)":
The slope of the line \(y=-4x + 2\) is \(m_1=-4\). Let the slope of the perpendicular line be \(m_2\). Since \(m_1\times m_2=-1\), we have \(-4\times m_2=-1\), so \(m_2=\frac{1}{4}\).…
s (for each sub - problem):
Let me double-check the matches for you! Let's go one by one to confirm:
All the matches are perfect! You nailed every single one. Nice work 😎
Let's solve the problem "through: \((3, -5)\), parallel to \(y = 5x - 3\)" as an example (the first "START" problem).
Parallel lines have the same slope. The given line is \(y = 5x - 3\), which is in slope - intercept form \(y=mx + b\) (where \(m\) is the slope and \(b\) is the y - intercept). So the slope \(m\) of the line we want to find is also \(m = 5\).
The point - slope form of a line is \(y - y_1=m(x - x_1)\), where \((x_1,y_1)\) is a point on the line and \(m\) is the slope. We know that \(x_1 = 3\), \(y_1=-5\) and \(m = 5\). Substitute these values into the point - slope form:
\(y-(-5)=5(x - 3)\)
Simplify the left - hand side: \(y + 5=5(x - 3)\)
Expand the right - hand side: \(y+5 = 5x-15\)
Subtract 5 from both sides to get the slope - intercept form: \(y=5x-15 - 5\)
\(y = 5x-20\)
Let's solve another problem, for example, "through: \((1,5)\), parallel to \(y = 5x-4\)":
The slope of the line \(y = 5x - 4\) is \(m = 5\) (since it is in \(y=mx + b\) form). For a line parallel to this line, the slope of the new line is also \(m = 5\).
Using the point \((x_1,y_1)=(1,5)\) and \(m = 5\) in the point - slope form \(y - y_1=m(x - x_1)\):
\(y - 5=5(x - 1)\)
Expand the right - hand side: \(y - 5=5x-5\)
Add 5 to both sides: \(y=5x-5 + 5\)
\(y = 5x\)
For the problem "through: \((-2,4)\), parallel to \(y=-\frac{1}{2}x + 4\)":
The slope of the line \(y =-\frac{1}{2}x + 4\) is \(m=-\frac{1}{2}\). A line parallel to it has the same slope \(m =-\frac{1}{2}\).
Using the point \((x_1,y_1)=(-2,4)\) and \(m =-\frac{1}{2}\) in \(y - y_1=m(x - x_1)\):
\(y - 4=-\frac{1}{2}(x-(-2))\)
\(y - 4=-\frac{1}{2}(x + 2)\)
Expand the right - hand side: \(y - 4=-\frac{1}{2}x-1\)
Add 4 to both sides: \(y=-\frac{1}{2}x-1 + 4\)
\(y=-\frac{1}{2}x + 3\)
For the problem "through: \((-2,5)\), perp. to \(y = 2x+1\)":
If two lines are perpendicular, the product of their slopes is \(- 1\). Let the slope of the given line \(y = 2x + 1\) be \(m_1=2\), and the slope of the line we want to find be \(m_2\). Then \(m_1\times m_2=-1\), so \(2\times m_2=-1\), and \(m_2=-\frac{1}{2}\).
Using the point \((x_1,y_1)=(-2,5)\) and \(m =-\frac{1}{2}\) in \(y - y_1=m(x - x_1)\):
\(y - 5=-\frac{1}{2}(x-(-2))\)
\(y - 5=-\frac{1}{2}(x + 2)\)
Expand the right - hand side: \(y - 5=-\frac{1}{2}x-1\)
Add 5 to both sides: \(y=-\frac{1}{2}x-1 + 5\)
\(y=-\frac{1}{2}x + 4\)
For the problem "through: \((-1,-2)\), perp. to \(y=-\frac{1}{2}x + 1\)":
The slope of the line \(y=-\frac{1}{2}x + 1\) is \(m_1 =-\frac{1}{2}\). Let the slope of the perpendicular line be \(m_2\). Since \(m_1\times m_2=-1\), we have \(-\frac{1}{2}\times m_2=-1\), so \(m_2 = 2\).
Using the point \((x_1,y_1)=(-1,-2)\) and \(m = 2\) in \(y - y_1=m(x - x_1)\):
\(y-(-2)=2(x-(-1))\)
\(y + 2=2(x + 1)\)
Expand the right - hand side: \(y + 2=2x+2\)
Subtract 2 from both sides: \(y=2x+2 - 2\)
\(y = 2x\)
For the problem "through: \((4,5)\), perp. to \(y=-4x + 2\)":
The slope of the line \(y=-4x + 2\) is \(m_1=-4\). Let the slope of the perpendicular line be \(m_2\). Since \(m_1\times m_2=-1\), we have \(-4\times m_2=-1\), so \(m_2=\frac{1}{4}\).
Using the point \((x_1,y_1)=(4,5)\) and \(m=\frac{1}{4}\) in \(y - y_1=m(x - x_1)\):
\(y - 5=\frac{1}{4}(x - 4)\)
Expand the right - hand side: \(y - 5=\frac{1}{4}x-1\)
Add 5 to both sides: \(y=\frac{1}{4}x-1 + 5\)
\(y=\frac{1}{4}x + 4\)
For the problem "through: \((4,-1)\), parallel to \(y=-\frac{1}{2}x + 2\)":
The slope of the line \(y=-\frac{1}{2}x + 2\) is \(m =-\frac{1}{2}\). A line parallel to it has the same slope \(m=-\frac{1}{2}\).
Using the point \((x_1,y_1)=(4,-1)\) and \(m =-\frac{1}{2}\) in \(y - y_1=m(x - x_1)\):
\(y-(-1)=-\frac{1}{2}(x - 4)\)
\(y + 1=-\frac{1}{2}(x - 4)\)
Expand the right - hand side: \(y + 1=-\frac{1}{2}x+2\)
Subtract 1 from both sides: \(y=-\frac{1}{2}x+2 - 1\)
\(y=-\frac{1}{2}x + 1\)
For the problem "through: \((2,-5)\), parallel to \(y=-4x + 1\)":
The slope of the line \(y=-4x + 1\) is \(m=-4\). A line parallel to it has the same slope \(m=-4\).
Using the point \((x_1,y_1)=(2,-5)\) and \(m=-4\) in \(y - y_1=m(x - x_1)\):
\(y-(-5)=-4(x - 2)\)
\(y + 5=-4(x - 2)\)
Expand the right - hand side: \(y + 5=-4x + 8\)
Subtract 5 from both sides: \(y=-4x+8 - 5\)
\(y=-4x + 3\)
For the problem "through: \((-2,3)\), perp. to \(y = 2x-5\)":
The slope of the line \(y = 2x-5\) is \(m_1 = 2\). Let the slope of the perpendicular line be \(m_2\). Since \(m_1\times m_2=-1\), we have \(2\times m_2=-1\), so \(m_2=-\frac{1}{2}\).
Using the point \((x_1,y_1)=(-2,3)\) and \(m =-\frac{1}{2}\) in \(y - y_1=m(x - x_1)\):
\(y - 3=-\frac{1}{2}(x-(-2))\)
\(y - 3=-\frac{1}{2}(x + 2)\)
Expand the right - hand side: \(y - 3=-\frac{1}{2}x-1\)
Add 3 to both sides: \(y=-\frac{1}{2}x-1 + 3\)
\(y=-\frac{1}{2}x + 2\)
For the problem "through: \((-1,-3)\), perp. to \(y=-\frac{1}{2}x + 2\)":
The slope of the line \(y=-\frac{1}{2}x + 2\) is \(m_1=-\frac{1}{2}\). Let the slope of the perpendicular line be \(m_2\). Since \(m_1\times m_2=-1\), we have \(-\frac{1}{2}\times m_2=-1\), so \(m_2 = 2\).
Using the point \((x_1,y_1)=(-1,-3)\) and \(m = 2\) in \(y - y_1=m(x - x_1)\):
\(y-(-3)=2(x-(-1))\)
\(y + 3=2(x + 1)\)
Expand the right - hand side: \(y + 3=2x+2\)
Subtract 3 from both sides: \(y=2x+2 - 3\)
\(y=2x-1\)
And for the "You MADE IT!" problem (let's assume we work backwards from the last one we solved to the start):
We can see that when we solve all these problems, we are matching the left - hand side equations with the right - hand side problem descriptions. For example, the solution to "through: \((3,-5)\), parallel to \(y = 5x-3\)" is \(y = 5x-20\), the solution to "through: \((1,5)\), parallel to \(y = 5x-4\)" is \(y = 5x\), the solution to "through: \((-2,4)\), parallel to \(y=-\frac{1}{2}x + 4\)" is \(y=-\frac{1}{2}x + 3\), the solution to "through: \((-2,5)\), perp. to \(y = 2x+1\)" is \(y=-\frac{1}{2}x + 4\), the solution to "through: \((-1,-2)\), perp. to \(y=-\frac{1}{2}x + 1\)" is \(y = 2x\), the solution to "through: \((4,5)\), perp. to \(y=-4x + 2\)" is \(y=\frac{1}{4}x + 4\), the solution to "through: \((4,-1)\), parallel to \(y=-\frac{1}{2}x + 2\)" is \(y=-\frac{1}{2}x + 1\), the solution to "through: \((2,-5)\), parallel to \(y=-4x + 1\)" is \(y=-4x + 3\), the solution to "through: \((-2,3)\), perp. to \(y = 2x-5\)" is \(y=-\frac{1}{2}x + 2\), the solution to "through: \((-1,-3)\), perp. to \(y=-\frac{1}{2}x + 2\)" is \(y=2x-1\)
If we follow the path of matching the equations on the left with the problem descriptions on the right, we can see that the first problem (START) \(y = 5x-20\) is the solution for "through: \((3,-5)\), parallel to \(y = 5x-3\)", and then we can follow the chain of parallel and perpendicular line equations to solve all the problems.
s (for each sub - problem):
Let me double-check the matches for you! Let's go one by one to confirm:
All the matches are perfect! You nailed every single one. Nice work 😎
Is this right
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
If the question was area, the answer is 8. But since the problem is unclear, please provide the exact question (e.g., find area, coordinates, perimeter, etc.) to get a precise sol…
7. $x=3$ (matches partial E) 8. $x=5$ (matches partial R) 9. H. $x=18$ 10. S. $x=9$ 11. L. $x=12$ (corrected) 12. C. $x=2$ 13. L. $x=12$ (corrected) 14. A. $x=20$ 15. I. $x=30$
Sitio oficial: mysovi.ai. Las páginas se sirven en question-banks.mysovi.ai. La app iOS está en Apple App Store.
Descargar en App Store Categoría: Geometría