Sovi AI

Sovi AI

Assistant de questions photo

fill in each blank give the following information: given the table belo…

a) $y=3-\frac{20}{x+5}$ b) $y=\frac{1}{x-4}$ (any non-zero numerator constant is valid)

Catégorie: calculus Mis à jour: 2026-02-09

Question

fill in each blank give the following information:
given the table below, write a possible equation for the function. 3 points
| x | -100 | -50 | -10 | -6 | -5 | -4 | -3 | 5 | 50 | 100 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| y | 3.21 | 3.44 | 7 | 23 | error | -17 | -7 | 1 | 2.63 | 2.81 |
write an equation for a rational function which has a v.a at $x=4$ and a h.a at $y=0$. 2 points
a) ______
b) ______

Étapes de solution

  1. Understand the question

    fill in each blank give the following information:
    given the table below, write a possible equation for the function. 3 points
    | x | -100 | -50 | -10 | -6 | -5 | -4 | -3 | 5 | 50 | 100 |
    | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
    | y | 3.21 | 3.44 | 7 | 23 | error | -17 | -7 | 1 | 2.63 | 2.81 |
    write an equation for a rational function which has a v.a at $x=4$ and a h.a at $y=0$. 2 points
    a) ______
    b) ______

  2. Explanation

    Step1: Identify vertical asymptote

    From the table, there is an error at $x=-5$, so the denominator has a factor of $(x+5)$.

    Step2: Identify horizontal asymptote

    As $x\to\pm\infty$, $y$ approaches 3. So the degrees of numerator and denominator are equal, and the leading coefficient ratio is 3. Let the function be $y=3+\frac{k}{x+5}$.

    Step3: Solve for k using a point

    Use $x=-4, y=-17$:
    $-17=3+\frac{k}{-4+5}$
    $-17=3+k$
    $k=-20$

    Step4: Verify with another point

    Check $x=-6, y=23$:
    $y=3+\frac{-20}{-6+5}=3+20=23$, which matches.

    Step5: Write equation for VA/HA

    For vertical asymptote $x=4$ and horizontal asymptote $y=0$, the rational function has denominator $(x-4)$ and numerator of lower degree. A simple form is $y=\frac{a}{x-4}$ (any non-zero $a$ works, e.g., $a=1$).

  3. Final answer

    a) $y=3-\frac{20}{x+5}$
    b) $y=\frac{1}{x-4}$ (any non-zero numerator constant is valid)

Réponse

Explanation

Step1: Identify vertical asymptote

From the table, there is an error at $x=-5$, so the denominator has a factor of $(x+5)$.

Step2: Identify horizontal asymptote

As $x\to\pm\infty$, $y$ approaches 3. So the degrees of numerator and denominator are equal, and the leading coefficient ratio is 3. Let the function be $y=3+\frac{k}{x+5}$.

Step3: Solve for k using a point

Use $x=-4, y=-17$:
$-17=3+\frac{k}{-4+5}$
$-17=3+k$
$k=-20$

Step4: Verify with another point

Check $x=-6, y=23$:
$y=3+\frac{-20}{-6+5}=3+20=23$, which matches.

Step5: Write equation for VA/HA

For vertical asymptote $x=4$ and horizontal asymptote $y=0$, the rational function has denominator $(x-4)$ and numerator of lower degree. A simple form is $y=\frac{a}{x-4}$ (any non-zero $a$ works, e.g., $a=1$).

Answer

a) $y=3-\frac{20}{x+5}$
b) $y=\frac{1}{x-4}$ (any non-zero numerator constant is valid)

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with chart, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T20:23:09

OCR Text

Show OCR extraction
fill in each blank give the following information:
given the table below, write a possible equation for the function. 3 points
| x | -100 | -50 | -10 | -6 | -5 | -4 | -3 | 5 | 50 | 100 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| y | 3.21 | 3.44 | 7 | 23 | error | -17 | -7 | 1 | 2.63 | 2.81 |
write an equation for a rational function which has a v.a at $x=4$ and a h.a at $y=0$. 2 points
a) ______
b) ______

Sujets liés

mathematicscalculuswith chart, calculationhigh schoolturns-1

Questions liées

Sovi AI iOS

Site officiel : mysovi.ai. Les pages de questions sont servies sur question-banks.mysovi.ai. L’app iOS est disponible sur l’App Store Apple.

Télécharger sur l'App Store Catégorie: Calcul