use end behavior to select the correct function for each graph: a. $x^2…
Top (green) graph: d. $x^3 - 4x^2$ Second (red) graph: b. $-x^4 + 2x^2$ Third (orange) graph: a. $x^2 - 7x + 9$ Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$
Top (green) graph: d. $x^3 - 4x^2$ Second (red) graph: b. $-x^4 + 2x^2$ Third (orange) graph: a. $x^2 - 7x + 9$ Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$
use end behavior to select the correct function for each graph:
a. $x^2 - 7x + 9$
b. $-x^4 + 2x^2$
c. $-x^3 - x^2 + 2x - 3$
d. $x^3 - 4x^2$
use end behavior to select the correct function for each graph:
a. $x^2 - 7x + 9$
b. $-x^4 + 2x^2$
c. $-x^3 - x^2 + 2x - 3$
d. $x^3 - 4x^2$
For polynomial $f(x)=a_nx^n+...+a_0$:
End behavior: $x\to+\infty, f(x)\to+\infty$; $x\to-\infty, f(x)\to-\infty$. This matches odd degree, positive leading coefficient.
Check options: d. $x^3-4x^2$ (degree 3, $a_3=1>0$)
End behavior: $x\to\pm\infty, f(x)\to-\infty$. This matches even degree, negative leading coefficient.
Check options: b. $-x^4+2x^2$ (degree 4, $a_4=-1<0$)
End behavior: $x\to\pm\infty, f(x)\to+\infty$. This matches even degree, positive leading coefficient.
Check options: a. $x^2-7x+9$ (degree 2, $a_2=1>0$)
End behavior: $x\to+\infty, f(x)\to-\infty$; $x\to-\infty, f(x)\to+\infty$. This matches odd degree, negative leading coefficient.
Check options: c. $-x^3-x^2+2x-3$ (degree 3, $a_3=-1<0$)
Top (green) graph: d. $x^3 - 4x^2$
Second (red) graph: b. $-x^4 + 2x^2$
Third (orange) graph: a. $x^2 - 7x + 9$
Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$
For polynomial $f(x)=a_nx^n+...+a_0$:
End behavior: $x\to+\infty, f(x)\to+\infty$; $x\to-\infty, f(x)\to-\infty$. This matches odd degree, positive leading coefficient.
Check options: d. $x^3-4x^2$ (degree 3, $a_3=1>0$)
End behavior: $x\to\pm\infty, f(x)\to-\infty$. This matches even degree, negative leading coefficient.
Check options: b. $-x^4+2x^2$ (degree 4, $a_4=-1<0$)
End behavior: $x\to\pm\infty, f(x)\to+\infty$. This matches even degree, positive leading coefficient.
Check options: a. $x^2-7x+9$ (degree 2, $a_2=1>0$)
End behavior: $x\to+\infty, f(x)\to-\infty$; $x\to-\infty, f(x)\to+\infty$. This matches odd degree, negative leading coefficient.
Check options: c. $-x^3-x^2+2x-3$ (degree 3, $a_3=-1<0$)
Top (green) graph: d. $x^3 - 4x^2$
Second (red) graph: b. $-x^4 + 2x^2$
Third (orange) graph: a. $x^2 - 7x + 9$
Bottom (blue) graph: c. $-x^3 - x^2 + 2x - 3$
use end behavior to select the correct function for each graph: a. $x^2 - 7x + 9$ b. $-x^4 + 2x^2$ c. $-x^3 - x^2 + 2x - 3$ d. $x^3 - 4x^2$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
Top (orange) graph: a. $x^2 - 8x + 9$ Second (green) graph: b. $x^3 - 4x^2$ Third (red) graph: d. $-x^4 + 2x^2$ Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$
none of the graphs shown
公式サイトは mysovi.ai。問題ページは question-banks.mysovi.ai で配信。iOS アプリは Apple App Store で提供。
App Store で入手 カテゴリ: 微積分