Sovi AI

Sovi AI

拍題學習助手

determine the zeros and the vertical intercept of the polynomial functi…

The zero(s) of the function is/are $x=8$ (multiplicity 2), $x=-6$, $x=11$ The horizontal intercept(s) is/are $(8, 0)$, $(-6, 0)$, $(11, 0)$ The vertical intercept is $(0, -8448)$ …

分類: calculus 更新時間: 2026-02-09

題目

determine the zeros and the vertical intercept of the polynomial function:
$f(x)=2(x-8)^2(x+6)(x-11)$
the zero(s) of the is/are
the horizontal intercept(s) is/are
the vertical intercept is
the degree of the polynomial function is

解題步驟

  1. Understand the question

    determine the zeros and the vertical intercept of the polynomial function:
    $f(x)=2(x-8)^2(x+6)(x-11)$
    the zero(s) of the is/are
    the horizontal intercept(s) is/are
    the vertical intercept is
    the degree of the polynomial function is

  2. Explanation

    Step1: Find zeros via factor roots

    Set each factor equal to 0:
    $x-8=0 \implies x=8$ (multiplicity 2)
    $x+6=0 \implies x=-6$
    $x-11=0 \implies x=11$

    Step2: Identify horizontal intercepts

    Horizontal intercepts are the zero pairs $(x,0)$:
    $(8,0), (-6,0), (11,0)$

    Step3: Calculate vertical intercept

    Set $x=0$ and solve for $f(0)$:
    $$
    \begin{align*}
    f(0)&=2(0-8)^2(0+6)(0-11)\\
    &=2(64)(6)(-11)\\
    &=2\times64\times(-66)\\
    &=128\times(-66)\\
    &=-8448
    \end{align*}
    $$

    Step4: Find polynomial degree

    Sum exponents of factors: $2+1+1=4$

  3. Final answer

    The zero(s) of the function is/are $x=8$ (multiplicity 2), $x=-6$, $x=11$
    The horizontal intercept(s) is/are $(8, 0)$, $(-6, 0)$, $(11, 0)$
    The vertical intercept is $(0, -8448)$
    The degree of the polynomial function is $4$

答案

Explanation

Step1: Find zeros via factor roots

Set each factor equal to 0:
$x-8=0 \implies x=8$ (multiplicity 2)
$x+6=0 \implies x=-6$
$x-11=0 \implies x=11$

Step2: Identify horizontal intercepts

Horizontal intercepts are the zero pairs $(x,0)$:
$(8,0), (-6,0), (11,0)$

Step3: Calculate vertical intercept

Set $x=0$ and solve for $f(0)$:
$$
\begin{align*}
f(0)&=2(0-8)^2(0+6)(0-11)\\
&=2(64)(6)(-11)\\
&=2\times64\times(-66)\\
&=128\times(-66)\\
&=-8448
\end{align*}
$$

Step4: Find polynomial degree

Sum exponents of factors: $2+1+1=4$

Answer

The zero(s) of the function is/are $x=8$ (multiplicity 2), $x=-6$, $x=11$
The horizontal intercept(s) is/are $(8, 0)$, $(-6, 0)$, $(11, 0)$
The vertical intercept is $(0, -8448)$
The degree of the polynomial function is $4$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T19:55:22

OCR Text

Show OCR extraction
determine the zeros and the vertical intercept of the polynomial function:
$f(x)=2(x-8)^2(x+6)(x-11)$
the zero(s) of the is/are
the horizontal intercept(s) is/are
the vertical intercept is
the degree of the polynomial function is

相關知識點

mathematicscalculuscalculationhigh schoolturns-1

關聯題目

Sovi AI iOS

官網:mysovi.ai。題庫頁面網域:question-banks.mysovi.ai。iOS 應用透過 Apple App Store 提供。

前往 App Store 下載 分類: 微積分