use end behavior to select the correct function for each graph: a. $x^2…
Top (orange) graph: a. $x^2 - 8x + 9$ Second (green) graph: b. $x^3 - 4x^2$ Third (red) graph: d. $-x^4 + 2x^2$ Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$
Top (orange) graph: a. $x^2 - 8x + 9$ Second (green) graph: b. $x^3 - 4x^2$ Third (red) graph: d. $-x^4 + 2x^2$ Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$
use end behavior to select the correct function for each graph:
a. $x^2 - 8x + 9$
b. $x^3 - 4x^2$
c. $-x^3 - x^2 + 4x - 3$
d. $-x^4 + 2x^2$
use end behavior to select the correct function for each graph:
a. $x^2 - 8x + 9$
b. $x^3 - 4x^2$
c. $-x^3 - x^2 + 4x - 3$
d. $-x^4 + 2x^2$
Top graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (both ends up). Matches even degree, positive leading coefficient: a. $x^2 - 8x + 9$
Second graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (right up, left down). Matches odd degree, positive leading coefficient: b. $x^3 - 4x^2$
Third graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (both ends down). Matches even degree, negative leading coefficient: d. $-x^4 + 2x^2$
Bottom graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (right down, left up). Matches odd degree, negative leading coefficient: c. $-x^3 - x^2 + 4x - 3$
Top (orange) graph: a. $x^2 - 8x + 9$
Second (green) graph: b. $x^3 - 4x^2$
Third (red) graph: d. $-x^4 + 2x^2$
Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$
Top graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (both ends up). Matches even degree, positive leading coefficient: a. $x^2 - 8x + 9$
Second graph: As $x\to+\infty$, $f(x)\to+\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (right up, left down). Matches odd degree, positive leading coefficient: b. $x^3 - 4x^2$
Third graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to-\infty$ (both ends down). Matches even degree, negative leading coefficient: d. $-x^4 + 2x^2$
Bottom graph: As $x\to+\infty$, $f(x)\to-\infty$; as $x\to-\infty$, $f(x)\to+\infty$ (right down, left up). Matches odd degree, negative leading coefficient: c. $-x^3 - x^2 + 4x - 3$
Top (orange) graph: a. $x^2 - 8x + 9$
Second (green) graph: b. $x^3 - 4x^2$
Third (red) graph: d. $-x^4 + 2x^2$
Bottom (blue) graph: c. $-x^3 - x^2 + 4x - 3$
use end behavior to select the correct function for each graph: a. $x^2 - 8x + 9$ b. $x^3 - 4x^2$ c. $-x^3 - x^2 + 4x - 3$ d. $-x^4 + 2x^2$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
none of the graphs shown
No, the inverse of $f(x) = -60(x-3)^2 - 50$ is not a function. The original function is a downward-opening parabola, which fails the horizontal line test (horizontal lines interse…
官網:mysovi.ai。題庫頁面網域:question-banks.mysovi.ai。iOS 應用透過 Apple App Store 提供。
前往 App Store 下載 分類: 微積分