Sovi AI

Sovi AI

Asistente de preguntas por foto

approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9…

$\frac{26 + 34}{2} = 30$

Categoría: calculus Actualizado: 2026-02-09

Pregunta

approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.

Pasos de solución

  1. Understand the question

    approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.

  2. Explanation

    Step1: Identify rectangle widths

    The interval from $x=-4$ to $x=0$ is split into 2 equal subintervals, so width $\Delta x = \frac{0 - (-4)}{2} = 2$.

    Step2: Calculate left rectangle area

    Left rectangles use heights at $x=-4$ and $x=-2$:
    Height at $x=-4$: $y(-4) = -\frac{1}{4}(-4)^2 + 9 = 5$
    Height at $x=-2$: $y(-2) = -\frac{1}{4}(-2)^2 + 9 = 8$
    Area $A_{\text{left}} = \Delta x \cdot (y(-4) + y(-2)) = 2 \cdot (5 + 8) = 26$

    Step3: Calculate right rectangle area

    Right rectangles use heights at $x=-2$ and $x=0$:
    Height at $x=-2$: $y(-2) = 8$
    Height at $x=0$: $y(0) = -\frac{1}{4}(0)^2 + 9 = 9$
    Area $A_{\text{right}} = \Delta x \cdot (y(-2) + y(0)) = 2 \cdot (8 + 9) = 34$

    Step4: Average the two areas

    Find the mean of the two areas:
    $\text{Average Area} = \frac{A_{\text{left}} + A_{\text{right}}}{2}$

  3. Final answer

    $\frac{26 + 34}{2} = 30$

Respuesta

Explanation

Step1: Identify rectangle widths

The interval from $x=-4$ to $x=0$ is split into 2 equal subintervals, so width $\Delta x = \frac{0 - (-4)}{2} = 2$.

Step2: Calculate left rectangle area

Left rectangles use heights at $x=-4$ and $x=-2$:
Height at $x=-4$: $y(-4) = -\frac{1}{4}(-4)^2 + 9 = 5$
Height at $x=-2$: $y(-2) = -\frac{1}{4}(-2)^2 + 9 = 8$
Area $A_{\text{left}} = \Delta x \cdot (y(-4) + y(-2)) = 2 \cdot (5 + 8) = 26$

Step3: Calculate right rectangle area

Right rectangles use heights at $x=-2$ and $x=0$:
Height at $x=-2$: $y(-2) = 8$
Height at $x=0$: $y(0) = -\frac{1}{4}(0)^2 + 9 = 9$
Area $A_{\text{right}} = \Delta x \cdot (y(-2) + y(0)) = 2 \cdot (8 + 9) = 34$

Step4: Average the two areas

Find the mean of the two areas:
$\text{Average Area} = \frac{A_{\text{left}} + A_{\text{right}}}{2}$

Answer

$\frac{26 + 34}{2} = 30$

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type with image, calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-09T19:56:03

OCR Text

Show OCR extraction
approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.

Temas relacionados

mathematicscalculuswith image, calculationhigh schoolturns-1

Preguntas relacionadas

Sovi AI iOS

Sitio oficial: mysovi.ai. Las páginas se sirven en question-banks.mysovi.ai. La app iOS está en Apple App Store.

Descargar en App Store Categoría: Cálculo