approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9…
$\frac{26 + 34}{2} = 30$
$\frac{26 + 34}{2} = 30$
approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.
approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.
The interval from $x=-4$ to $x=0$ is split into 2 equal subintervals, so width $\Delta x = \frac{0 - (-4)}{2} = 2$.
Left rectangles use heights at $x=-4$ and $x=-2$:
Height at $x=-4$: $y(-4) = -\frac{1}{4}(-4)^2 + 9 = 5$
Height at $x=-2$: $y(-2) = -\frac{1}{4}(-2)^2 + 9 = 8$
Area $A_{\text{left}} = \Delta x \cdot (y(-4) + y(-2)) = 2 \cdot (5 + 8) = 26$
Right rectangles use heights at $x=-2$ and $x=0$:
Height at $x=-2$: $y(-2) = 8$
Height at $x=0$: $y(0) = -\frac{1}{4}(0)^2 + 9 = 9$
Area $A_{\text{right}} = \Delta x \cdot (y(-2) + y(0)) = 2 \cdot (8 + 9) = 34$
Find the mean of the two areas:
$\text{Average Area} = \frac{A_{\text{left}} + A_{\text{right}}}{2}$
$\frac{26 + 34}{2} = 30$
The interval from $x=-4$ to $x=0$ is split into 2 equal subintervals, so width $\Delta x = \frac{0 - (-4)}{2} = 2$.
Left rectangles use heights at $x=-4$ and $x=-2$:
Height at $x=-4$: $y(-4) = -\frac{1}{4}(-4)^2 + 9 = 5$
Height at $x=-2$: $y(-2) = -\frac{1}{4}(-2)^2 + 9 = 8$
Area $A_{\text{left}} = \Delta x \cdot (y(-4) + y(-2)) = 2 \cdot (5 + 8) = 26$
Right rectangles use heights at $x=-2$ and $x=0$:
Height at $x=-2$: $y(-2) = 8$
Height at $x=0$: $y(0) = -\frac{1}{4}(0)^2 + 9 = 9$
Area $A_{\text{right}} = \Delta x \cdot (y(-2) + y(0)) = 2 \cdot (8 + 9) = 34$
Find the mean of the two areas:
$\text{Average Area} = \frac{A_{\text{left}} + A_{\text{right}}}{2}$
$\frac{26 + 34}{2} = 30$
approximate the area of the region bounded by $y = -\\frac{1}{4}x^{2}+9$, the x-axis, $x = -4$, and $x = 0$ by finding the combined area of the rectangles (as shown in each figure) and averaging the results.
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
dotted: a. $f(x) = -2 \cdot 3^x$ solid: b. $g(x) = -3 \cdot 3^x$
dashed: a. \(f(x) = e^x\) dotted: c. \(h(x) = 2^x\) solid: b. \(g(x) = 3^x\)
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Calculus