Sovi AI

Sovi AI

Photo question helper

question the graph of which of the following in the xy - plane does not…

\( y = \sqrt{x}+11 \) (the first option)

Category: calculus Updated: 2026-02-04

Question

question
the graph of which of the following in the xy - plane does not intersect the line $y = 10$?

  • $y = \\sqrt{x}+11$
  • $y = \\sqrt{x + 11}$
  • $y = 11 - \\sqrt{x}$
  • $y = \\sqrt{11 - x}$

Solution Steps

  1. Understand the question

    question
    the graph of which of the following in the xy - plane does not intersect the line $y = 10$?

    • $y = \\sqrt{x}+11$
    • $y = \\sqrt{x + 11}$
    • $y = 11 - \\sqrt{x}$
    • $y = \\sqrt{11 - x}$
  2. Explanation

    Step1: Analyze \( y = \sqrt{x}+11 \)

    Set \( y = 10 \), so \( 10=\sqrt{x}+11 \). Then \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \) for real \( x \), no solution? Wait, no, wait: \( \sqrt{x}=-1 \) has no real solution, but wait, let's check other options. Wait, maybe I made a mistake. Wait, let's check each function:

    Step2: Analyze \( y=\sqrt{x + 11} \)

    Set \( y = 10 \), so \( 10=\sqrt{x + 11} \). Square both sides: \( 100=x + 11 \), so \( x=89 \). Valid, since \( x+11=100\geq0 \). So this intersects \( y = 10 \).

    Step3: Analyze \( y = 11-\sqrt{x} \)

    Set \( y = 10 \), so \( 10=11-\sqrt{x} \). Then \( \sqrt{x}=11 - 10 = 1 \), so \( x = 1 \). Valid, since \( \sqrt{1}=1 \). So this intersects \( y = 10 \).

    Step4: Analyze \( y=\sqrt{11 - x} \)

    Set \( y = 10 \), so \( 10=\sqrt{11 - x} \). Square both sides: \( 100=11 - x \), so \( x=11 - 100=-89 \). Then check the domain: \( 11 - x\geq0\Rightarrow x\leq11 \). \( x=-89 \) is valid, so this intersects \( y = 10 \).

    Wait, wait, earlier step1: \( y=\sqrt{x}+11 \), set \( y = 10 \): \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \), so no solution. So this graph does not intersect \( y = 10 \).

  3. Final answer

    \( y = \sqrt{x}+11 \) (the first option)

Answer

Explanation

Step1: Analyze \( y = \sqrt{x}+11 \)

Set \( y = 10 \), so \( 10=\sqrt{x}+11 \). Then \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \) for real \( x \), no solution? Wait, no, wait: \( \sqrt{x}=-1 \) has no real solution, but wait, let's check other options. Wait, maybe I made a mistake. Wait, let's check each function:

Step2: Analyze \( y=\sqrt{x + 11} \)

Set \( y = 10 \), so \( 10=\sqrt{x + 11} \). Square both sides: \( 100=x + 11 \), so \( x=89 \). Valid, since \( x+11=100\geq0 \). So this intersects \( y = 10 \).

Step3: Analyze \( y = 11-\sqrt{x} \)

Set \( y = 10 \), so \( 10=11-\sqrt{x} \). Then \( \sqrt{x}=11 - 10 = 1 \), so \( x = 1 \). Valid, since \( \sqrt{1}=1 \). So this intersects \( y = 10 \).

Step4: Analyze \( y=\sqrt{11 - x} \)

Set \( y = 10 \), so \( 10=\sqrt{11 - x} \). Square both sides: \( 100=11 - x \), so \( x=11 - 100=-89 \). Then check the domain: \( 11 - x\geq0\Rightarrow x\leq11 \). \( x=-89 \) is valid, so this intersects \( y = 10 \).

Wait, wait, earlier step1: \( y=\sqrt{x}+11 \), set \( y = 10 \): \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \), so no solution. So this graph does not intersect \( y = 10 \).

Answer

\( y = \sqrt{x}+11 \) (the first option)

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type multiple choice
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-04T16:23:31

OCR Text

Show OCR extraction
question
the graph of which of the following in the xy - plane does not intersect the line $y = 10$?
- $y = \\sqrt{x}+11$
- $y = \\sqrt{x + 11}$
- $y = 11 - \\sqrt{x}$
- $y = \\sqrt{11 - x}$

Related Topics

mathematicscalculusmultiple choicehigh schoolliked-answerturns-1

Related Questions

Sovi AI iOS

Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.

Download on App Store Category: Calculus