question the graph of which of the following in the xy - plane does not…
\( y = \sqrt{x}+11 \) (the first option)
\( y = \sqrt{x}+11 \) (the first option)
question
the graph of which of the following in the xy - plane does not intersect the line $y = 10$?
question
the graph of which of the following in the xy - plane does not intersect the line $y = 10$?
Set \( y = 10 \), so \( 10=\sqrt{x}+11 \). Then \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \) for real \( x \), no solution? Wait, no, wait: \( \sqrt{x}=-1 \) has no real solution, but wait, let's check other options. Wait, maybe I made a mistake. Wait, let's check each function:
Set \( y = 10 \), so \( 10=\sqrt{x + 11} \). Square both sides: \( 100=x + 11 \), so \( x=89 \). Valid, since \( x+11=100\geq0 \). So this intersects \( y = 10 \).
Set \( y = 10 \), so \( 10=11-\sqrt{x} \). Then \( \sqrt{x}=11 - 10 = 1 \), so \( x = 1 \). Valid, since \( \sqrt{1}=1 \). So this intersects \( y = 10 \).
Set \( y = 10 \), so \( 10=\sqrt{11 - x} \). Square both sides: \( 100=11 - x \), so \( x=11 - 100=-89 \). Then check the domain: \( 11 - x\geq0\Rightarrow x\leq11 \). \( x=-89 \) is valid, so this intersects \( y = 10 \).
Wait, wait, earlier step1: \( y=\sqrt{x}+11 \), set \( y = 10 \): \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \), so no solution. So this graph does not intersect \( y = 10 \).
\( y = \sqrt{x}+11 \) (the first option)
Set \( y = 10 \), so \( 10=\sqrt{x}+11 \). Then \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \) for real \( x \), no solution? Wait, no, wait: \( \sqrt{x}=-1 \) has no real solution, but wait, let's check other options. Wait, maybe I made a mistake. Wait, let's check each function:
Set \( y = 10 \), so \( 10=\sqrt{x + 11} \). Square both sides: \( 100=x + 11 \), so \( x=89 \). Valid, since \( x+11=100\geq0 \). So this intersects \( y = 10 \).
Set \( y = 10 \), so \( 10=11-\sqrt{x} \). Then \( \sqrt{x}=11 - 10 = 1 \), so \( x = 1 \). Valid, since \( \sqrt{1}=1 \). So this intersects \( y = 10 \).
Set \( y = 10 \), so \( 10=\sqrt{11 - x} \). Square both sides: \( 100=11 - x \), so \( x=11 - 100=-89 \). Then check the domain: \( 11 - x\geq0\Rightarrow x\leq11 \). \( x=-89 \) is valid, so this intersects \( y = 10 \).
Wait, wait, earlier step1: \( y=\sqrt{x}+11 \), set \( y = 10 \): \( \sqrt{x}=10 - 11=-1 \). But \( \sqrt{x}\geq0 \), so no solution. So this graph does not intersect \( y = 10 \).
\( y = \sqrt{x}+11 \) (the first option)
question
the graph of which of the following in the xy - plane does not intersect the line $y = 10$?
- $y = \\sqrt{x}+11$
- $y = \\sqrt{x + 11}$
- $y = 11 - \\sqrt{x}$
- $y = \\sqrt{11 - x}$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
The graph consists of: - A horizontal line segment at $y = 2$ for $x \leq -1$ (with a closed dot at $(-1, 2)$). - A line segment from $(-1, 2)$ (open dot, but the first segment ha…
\( 0.8\overline{3} \) (the first option: \( 0.8\overline{3} \))
官网:mysovi.ai。题库页面域名:question-banks.mysovi.ai。iOS 应用通过 Apple App Store 提供。
前往 App Store 下载 分类: 微积分