4) label the graphs with the correct functions. dashed: solid: a. $f(x)…
dashed: $\boldsymbol{g(x)=e^{3x}}$ solid: $\boldsymbol{f(x)=e^{2x}}$
dashed: $\boldsymbol{g(x)=e^{3x}}$ solid: $\boldsymbol{f(x)=e^{2x}}$
dashed:
solid:
a. $f(x)=e^{2x}$
b. $g(x)=e^{3x}$
dashed:
solid:
a. $f(x)=e^{2x}$
b. $g(x)=e^{3x}$
For exponential functions of the form $y = e^{kx}$, when $k>0$, the function increases as $x$ increases, and a larger $k$ means faster growth. When $x$ is negative, $y = e^{kx} = \frac{1}{e^{|kx|}}$, so a larger $k$ leads to a smaller $y$-value for negative $x$.
The dashed graph decreases faster (has lower values) for negative $x$, so it corresponds to the function with the larger exponent coefficient, which is $g(x)=e^{3x}$. The solid graph decreases slower, so it corresponds to $f(x)=e^{2x}$.
dashed: $\boldsymbol{g(x)=e^{3x}}$
solid: $\boldsymbol{f(x)=e^{2x}}$
For exponential functions of the form $y = e^{kx}$, when $k>0$, the function increases as $x$ increases, and a larger $k$ means faster growth. When $x$ is negative, $y = e^{kx} = \frac{1}{e^{|kx|}}$, so a larger $k$ leads to a smaller $y$-value for negative $x$.
The dashed graph decreases faster (has lower values) for negative $x$, so it corresponds to the function with the larger exponent coefficient, which is $g(x)=e^{3x}$. The solid graph decreases slower, so it corresponds to $f(x)=e^{2x}$.
dashed: $\boldsymbol{g(x)=e^{3x}}$
solid: $\boldsymbol{f(x)=e^{2x}}$
4) label the graphs with the correct functions.
dashed:
solid:
a. $f(x)=e^{2x}$
b. $g(x)=e^{3x}$
Top-left cell: 180 Top-right cell: 6 Bottom-left cell: 600 Bottom-right cell: 20 Final product: 806
| Equation | Solution (Fraction) | Solution (Decimal) | |----------|---------------------|--------------------| | $2x=3$ | $\frac{3}{2}$ | $1.5$ | | $5y=3$ | $\frac{3}{5}$ | $0.6$…
- Fila 2: Circular el par (5, 2). - Fila 3: Circular el par (3, 3) (o la tarjeta con 3 y la otra con 4 dibujos, pero los números son 3 y 3? Wait, la tercera fila: primera tarjeta …
It's basically just a checklist so you don't get mixed up when a math problem has a bunch of stuff going on at once. You just go down the list in order: 1. **P**arentheses: Do any…
\(-15\)
The initial number of bacteria is 5. ### Turn 2 Answer Ça marche, regardons ça ! On dirait que tu es en plein dans les maths financières. Pour le **numéro 11**, on cherche le taux…
The zero(s) of the function is/are $x=8$ (multiplicity 2), $x=-6$, $x=11$ The horizontal intercept(s) is/are $(8, 0)$, $(-6, 0)$, $(11, 0)$ The vertical intercept is $(0, -8448)$ …
$\frac{26 + 34}{2} = 30$
Official website: mysovi.ai. Question pages are served on question-banks.mysovi.ai. iOS app is distributed through the Apple App Store.
Download on App Store Category: Calculus