Sovi AI

Sovi AI

拍题学习助手

find the compositions. $f(x) = 3x + 2, g(x) = x^2 - 4$ (a) $(f \\circ g…

\(3x^{2}-10\) ### Part (b)

分类: calculus 更新时间: 2026-02-02

题目

find the compositions.
$f(x) = 3x + 2, g(x) = x^2 - 4$
(a) $(f \\circ g)(x) = \\square$
(b) $(g \\circ f)(x) = \\square$
(c) $(f \\circ g)(-1) = \\square$
(d) $(g \\circ f)(2) = \\square$

解题步骤

  1. Understand the question

    find the compositions.
    $f(x) = 3x + 2, g(x) = x^2 - 4$
    (a) $(f \\circ g)(x) = \\square$
    (b) $(g \\circ f)(x) = \\square$
    (c) $(f \\circ g)(-1) = \\square$
    (d) $(g \\circ f)(2) = \\square$

  2. Response
    Part (a)
  3. Explanation

    Step 1: Recall the definition of function composition

    To find \((f \circ g)(x)\), we need to substitute \(g(x)\) into \(f(x)\). That is, \((f \circ g)(x)=f(g(x))\).

    Step 2: Substitute \(g(x)=x^{2}-4\) into \(f(x)\)

    Given \(f(x) = 3x+2\), we replace \(x\) in \(f(x)\) with \(g(x)=x^{2}-4\). So we have:
    \(f(g(x))=3(g(x)) + 2\)
    Substitute \(g(x)=x^{2}-4\) into the above formula:
    \(f(g(x))=3(x^{2}-4)+2\)

    Step 3: Simplify the expression

    First, distribute the 3: \(3(x^{2}-4)=3x^{2}-12\)
    Then add 2: \(3x^{2}-12 + 2=3x^{2}-10\)

  4. Explanation

    Step 1: Recall the definition of function composition

    To find \((g \circ f)(x)\), we need to substitute \(f(x)\) into \(g(x)\). That is, \((g \circ f)(x)=g(f(x))\).

    Step 2: Substitute \(f(x)=3x + 2\) into \(g(x)\)

    Given \(g(x)=x^{2}-4\), we replace \(x\) in \(g(x)\) with \(f(x)=3x + 2\). So we have:
    \(g(f(x))=(f(x))^{2}-4\)
    Substitute \(f(x)=3x + 2\) into the above formula:
    \(g(f(x))=(3x + 2)^{2}-4\)

    Step 3: Simplify the expression

    First, expand \((3x + 2)^{2}\) using the formula \((a + b)^{2}=a^{2}+2ab + b^{2}\), where \(a = 3x\) and \(b = 2\). So \((3x+2)^{2}=(3x)^{2}+2\times(3x)\times2+2^{2}=9x^{2}+12x + 4\)
    Then subtract 4: \(9x^{2}+12x + 4-4=9x^{2}+12x\)

  5. Explanation

    Step 1: Use the result from part (a)

    From part (a), we know that \((f \circ g)(x)=3x^{2}-10\). To find \((f \circ g)(-1)\), we substitute \(x=-1\) into the expression for \((f \circ g)(x)\).

    Step 2: Substitute \(x = - 1\) into \(3x^{2}-10\)

    \((f \circ g)(-1)=3\times(-1)^{2}-10\)

    Step 3: Simplify the expression

    First, calculate \((-1)^{2}=1\), then \(3\times1 = 3\)
    Then \(3-10=-7\)

  6. Final answer

    \(3x^{2}-10\)

    Part (b)

答案

Response

Part (a)

Explanation

Step 1: Recall the definition of function composition

To find \((f \circ g)(x)\), we need to substitute \(g(x)\) into \(f(x)\). That is, \((f \circ g)(x)=f(g(x))\).

Step 2: Substitute \(g(x)=x^{2}-4\) into \(f(x)\)

Given \(f(x) = 3x+2\), we replace \(x\) in \(f(x)\) with \(g(x)=x^{2}-4\). So we have:
\(f(g(x))=3(g(x)) + 2\)
Substitute \(g(x)=x^{2}-4\) into the above formula:
\(f(g(x))=3(x^{2}-4)+2\)

Step 3: Simplify the expression

First, distribute the 3: \(3(x^{2}-4)=3x^{2}-12\)
Then add 2: \(3x^{2}-12 + 2=3x^{2}-10\)

Answer

\(3x^{2}-10\)

Part (b)

Explanation

Step 1: Recall the definition of function composition

To find \((g \circ f)(x)\), we need to substitute \(f(x)\) into \(g(x)\). That is, \((g \circ f)(x)=g(f(x))\).

Step 2: Substitute \(f(x)=3x + 2\) into \(g(x)\)

Given \(g(x)=x^{2}-4\), we replace \(x\) in \(g(x)\) with \(f(x)=3x + 2\). So we have:
\(g(f(x))=(f(x))^{2}-4\)
Substitute \(f(x)=3x + 2\) into the above formula:
\(g(f(x))=(3x + 2)^{2}-4\)

Step 3: Simplify the expression

First, expand \((3x + 2)^{2}\) using the formula \((a + b)^{2}=a^{2}+2ab + b^{2}\), where \(a = 3x\) and \(b = 2\). So \((3x+2)^{2}=(3x)^{2}+2\times(3x)\times2+2^{2}=9x^{2}+12x + 4\)
Then subtract 4: \(9x^{2}+12x + 4-4=9x^{2}+12x\)

Answer

\(9x^{2}+12x\)

Part (c)

Explanation

Step 1: Use the result from part (a)

From part (a), we know that \((f \circ g)(x)=3x^{2}-10\). To find \((f \circ g)(-1)\), we substitute \(x=-1\) into the expression for \((f \circ g)(x)\).

Step 2: Substitute \(x = - 1\) into \(3x^{2}-10\)

\((f \circ g)(-1)=3\times(-1)^{2}-10\)

Step 3: Simplify the expression

First, calculate \((-1)^{2}=1\), then \(3\times1 = 3\)
Then \(3-10=-7\)

Answer

\(-7\)

Part (d)

Explanation

Step 1: Use the result from part (b)

From part (b), we know that \((g \circ f)(x)=9x^{2}+12x\). To find \((g \circ f)(2)\), we substitute \(x = 2\) into the expression for \((g \circ f)(x)\).

Step 2: Substitute \(x = 2\) into \(9x^{2}+12x\)

\((g \circ f)(2)=9\times(2)^{2}+12\times2\)

Step 3: Simplify the expression

First, calculate \((2)^{2}=4\), then \(9\times4 = 36\) and \(12\times2=24\)
Then \(36 + 24=60\)

Answer

\(60\)

Question Image

Click to enlarge

Question Analysis

Subject mathematics
Sub Subject calculus
Education Level high school
Difficulty unspecified
Question Type calculation
Multi Question No
Question Count 1
Analysis Status completed
Analyzed At 2026-02-02T13:46:09

OCR Text

Show OCR extraction
find the compositions.
$f(x) = 3x + 2, g(x) = x^2 - 4$
(a) $(f \\circ g)(x) = \\square$
(b) $(g \\circ f)(x) = \\square$
(c) $(f \\circ g)(-1) = \\square$
(d) $(g \\circ f)(2) = \\square$

相关知识点

mathematicscalculuscalculationhigh schoolliked-answerturns-1

关联题目

Sovi AI iOS

官网:mysovi.ai。题库页面域名:question-banks.mysovi.ai。iOS 应用通过 Apple App Store 提供。

前往 App Store 下载 分类: 微积分